
ISSA DEVELOPING AND CONNECTING
CYBERSECURITY LEADERS GLOBALLY

This article discusses the opportunities DevSecOps offers to stand up infrastructure in a consistent
secure way as well as move discovery of security flaws earlier and more often in the software
development life cycle, with a back-to-basics view of securing access to these resources first.

By Tony Rice – ISSA member, Raleigh Chapter

Abstract
DevOps offers a world of possibilities to automate security
checks to find vulnerabilities earlier, before they are deployed
and when they are least expensive to fix. It also offers oppor-
tunities to more closely partner with developers and opera-
tions personnel. But before we turn DevOps into DevSecOps,
the build pipelines enabling this automation must be locked
down to prevent information about the vulnerabilities found
from being leaked the way credentials are leaking today.

When security professionals hear the term
“DevOps,” a rainbow of automated security
checks come to mind. Visions of vulnerabilities

revealed early and often dance in their heads, quickly morph-
ing DevOps into DevSecOps.
We dream of all that agile development methodologies offer
to more closely partner with developers and operations:
• Helping developers stop the flow of OWASP Top 101 exam-

ples into the codebase.
• Guiding operations personnel to the consistency that in-

frastructure-as-code provides.

1 OWASP Top 10, 2017 https://www.owasp.org/index.php/Top_10-2017_Top_10.

• Putting an end to the vulnerability whack-a-mole that ar-
tisanal handcrafted (and never again patched) instances
bring.

Tool vendors stoke these fires with talk of how easily their
tools with prepackaged test suites integrate into existing
pipelines. It’s even easier if you migrate everything over to
their flavor of DevOps. And the dashboards, so many dash-
boards, each providing evidence of the progress being made
to leadership eager to know how the investment is paying off.
Can DevSecOps finally fulfill the promise of moving vulner-
ability discovery to the left of development process where it is
cheaper and easier? As time between deliveries shrinks from
months to hours, DevSecOps must enable these things and
more.

Security professional, heal thyself
Before rushing off to integrate the dynamic application secu-
rity test suite and code scanner—the ones that cost so much
yet get used so little—into a maturing DevOps pipeline, con-
sider the threat landscape that DevOps itself introduces.
Functional and other tests in a DevOps pipeline describe
where the product doesn’t work. Security tests describe where
the product is vulnerable. This is sensitive information that

Secure DevOps
before DevSecOps

 Secure DevOps
 before DevSecOps

16 – ISSA Journal | November 2019

https://www.owasp.org/index.php/Top_10-2017_Top_10

should be generated, stored, and transmitted in an appropri-
ately secured environment.
Carelessly implemented Dev[Sec]Ops can broaden an already
vulnerable attack surface. Your DevOps pipelines weren’t
built in a day and neither should your DevSecOps. So where
to start?
Begin by securing the DevOps pipeline itself, using the same
principals you’ve been preaching to the development and op-
eration teams. A basic continuous integration/continuous de-
ployment (CI/CD) pipeline is made of segments implemented
by individual tools, each with its own set of credentials:
• Source code repository: to track changes as the develop-

ment team moves the product forward such as Git, Bit-
bucket, Subversion, SourceForge, CodeCommit, Cloud
Source, etc.2

• Artifact repository: to store the fruits of those builds such
as Artifactory, Archiva, Nexus, etc.3

• Deployment host: somewhere to deploy the product such as
cloud compute services like Amazon Web Services (AWS)
EC2, Azure Virtual Machine, or Google Cloud Platform
(GCP) Compute, or maybe serverless services like AWS
Lambda, Azure Functions, or GCP FAAS; containers; or
an even an on-premise host.

• Automation platform: to keep things moving through the
pipeline when they should and stop their progress when
they shouldn’t such as Jenkins, Bamboo, CircleCI, GitLab,
CodeBuild, etc.4

2 Neil Chue Hong, “Choosing a Repository for Your Software Project,” Software
Sustainability Institute, https://www.software.ac.uk/choosing-repository-your-
software-project.

3 Carlos Sanchez, “Using Repository Managers,” DZone Refcard #181, https://dzone.
com/refcardz/binary-repository-management.

4 R. Vaasanthi, et al, “Comparative Study of DevOps Build Automation Tools,”
International Journal of Computer Applications, July 2017, https://www.ijcaonline.
org/archives/volume170/number7/vaasanthi-2017-ijca-914908.pdf.

Many environments also include:
• Communication tools such as Slack, HipChat, WebEx

Teams, etc. that enable developer collaboration and bots
to ensure visibility of DevOps results.

• Workflow and defect management tools like Jira, Trello,
Bugzilla, etc.

Begin by looking at the couplings along that pipeline of tools.
Are they secure or is your hard work leaking into the hands
of the bad guys? An automation platform like Jenkins is the
grand central station of this system and a good place to start
securing CI/CD efforts.
If your CI/CD pipeline grew out of a developer experi-
ment that became a critical production resource over time,
you might find developer personal userids and passwords
throughout its configuration. This can lead to failing pipe-
lines when that person changes the password. It is tough to
remember all the places those credentials have been used.
You might find that one developer account across each of
those tools in the pipeline.
Those person-to-machine credentials should be replaced
with machine-to-machine, rotated on a regular basis. Also
use access tokens rather than userid and passwords whenever
possible. If your tool of choice doesn’t support access tokens,
that’s a good sign to keep looking at other tools.
However, as CI/CD pipelines proliferate, and they will, you’ll
quickly find that managing all those secrets will become
cumbersome and risky.

Stop checking in credentials
You need look no further than files publicly available via
GitHub.com for one of the most common problems in
DevOps: storing configuration files and source code contain-
ing secrets in plain text, in a source-code repository

November 2019 | ISSA Journal – 17

Secure DevOps before DevSecOps | Tony Rice

www.issa.org

l

l

l

l

l

Members Join ISSA to:
Earn CPEs through Conferences and Education

Network with Industry Leaders

Advance their Careers

Attend Chapter Events to Meet Local Colleagues

Become part of Special Interest Groups (SIGs)
that focus on particular topics

Join Today: www.issa.org/join
Regular Membership $95*
(+Chapter Dues: $0-$35*)

CISO Executive Membership $995
(Includes Quarterly Forums)

*US Dollars /Year

https://www.software.ac.uk/choosing-repository-your-software-project
https://www.software.ac.uk/choosing-repository-your-software-project
https://dzone.com/refcardz/binary-repository-management
https://dzone.com/refcardz/binary-repository-management
https://www.ijcaonline.org/archives/volume170/number7/vaasanthi-2017-ijca-914908.pdf
https://www.ijcaonline.org/archives/volume170/number7/vaasanthi-2017-ijca-914908.pdf

kins Masters. It natively supports each of the authentication
methods used by platforms mentioned here (AWS, Azure,
and GCP) as well as some you might need in the future like
Kubernetes, GitHub, etc.8 You can control much of this right
from your Jenkins Grand Central Station with plugins that
support secrets brokers like Vault.

Role-based access control
You probably already have access control on source code,
maybe even enforcing roles to limit interaction between
branches and locking down sensitive areas to a trusted set of
developers. This protects the source code, but don’t forget to
provide similar protections to binaries.9 They are intellectu-
al property as well, not that far removed from source code
thanks to decompilers and other reverse engineering tools
like the NSA’s Ghidra.10

No user, neither flesh-and-blood nor DevOps machine-to-ma-
chine accounts, should be provided more access than neces-
sary.11

Out of the box, most tools, especially artifact repositories like
Artifactory, know nothing about your business. Default con-
figurations are often designed to enable getting the tool up
and running quickly rather than encouraging good security
practices. Your first step with a new CI/CD tool should be
configuring access to reflect the development workflow and
users and systems that will interact with it.
Artifact repositories should have a minimum of three roles:
• Limited privileges intended for users and automation ac-

counts for fetching artifacts for use in builds and orches-
tration tasks as read only.

• Limit privileges for destructive functions such as delet-
ing artifacts to a separate administrative role.

8 HashiCorp Vault, “Auth Methods,” https://www.vaultproject.io/docs/auth.
9 GitHub, “Access Permissions,” https://help.github.com/en/articles/access-

permissions-on-github.
10 Kelly Sheridan, “NSA Researchers Talk Development, Release of Ghidra SRE Tools,”

Dark Reading, https://www.darkreading.com/endpoint/nsa-researchers-talk-
development-release-of-ghidra-sre-tool/d/d-id/1335536.

11 JFrog, “Configuring Security,” https://www.jfrog.com/confluence/display/RTF/
Configuring+Security.

Attackers don’t need to go to the trouble of a man-in-the-
middle attack to steal credentials when someone has made
it so easy by checking in everything they need to access each
tool along the pipeline, even the destination hosts where the
application is deployed to.
A code search of json files publicly visible on GitHub.com
using the string aws_access_key_id filename:*.json produc-
es several thousand results. You can watch people make this
mistake every few seconds publicly, in near real time with
shhgit.5 The open source project by Paul Prince flags secrets
and sensitive files as they are checked into GitHub in near

real time (figure 1).
A similar search in commit comments
containing the phrase removing password
brings up page after page of examples of
developers who caught and corrected their
mistake.6 But remember the Internet is for-
ever. That leaked secret remains in the re-
pository’s history for all to see.

If a secret is exposed like this, change the password, revoke
the token. Better yet, prevent this easy-to-make mistake in
your DevOps pipeline by removing the possibility of using
hard-coded credentials at all.

Now stop managing credentials
A secrets broker like HashiCorp’s Vault, Confidant, Keywhiz,
etc., or similar services offered by cloud service providers like
AWS, Docker, or Google Cloud offer a different approach
to help deal with the growing problem of secrets sprawl as
DevOps becomes the norm. These brokers not only reduce
the attack surface by implementing secrets programmatically
via short-lived tokens, they also take care of lifecycle manage-
ment, freeing you from the time-consuming and error-prone
chore of rotating passwords or keys by hand.7

Secrets brokers like Vault provide an encrypted, single source
of truth for secrets instead of spreading them across Jen-

5 Paul Prince, “Ah shhgit! Find GitHub Secrets in Realtime”, GitHub – https://github.
com/eth0izzle/shhgit/.

6 Search results, https://github.com/search?q=removing+password&type=Commits.
7 NIST Special Publication 800-53 (Rev. 4) “Alternative Security Mechanisms (CP-13),

https://nvd.nist.gov/800-53/Rev4/control/CP-13.

The Internet
is forever and
so is GitHub.

Figure 1 – Shhigt revelations

18 – ISSA Journal | November 2019

Secure DevOps before DevSecOps | Tony Rice

https://www.vaultproject.io/docs/auth
https://help.github.com/en/articles/access-permissions-on-github
https://help.github.com/en/articles/access-permissions-on-github
https://www.darkreading.com/endpoint/nsa-researchers-talk-development-release-of-ghidra-sre-tool/d/d-id/1335536
https://www.darkreading.com/endpoint/nsa-researchers-talk-development-release-of-ghidra-sre-tool/d/d-id/1335536
https://www.jfrog.com/confluence/display/RTF/Configuring+Security
https://www.jfrog.com/confluence/display/RTF/Configuring+Security
https://github.com/eth0izzle/shhgit/
https://github.com/eth0izzle/shhgit/
https://github.com/search?q=removing+password&type=Commits
https://nvd.nist.gov/800-53/Rev4/control/CP-13

Start small with free tools like OWASP Zed Attack Proxy
(ZAP) for dynamically scanning web application projects. 13

Enable tests selectively. As you find tests that provide value,
add them to the DevSecOps pipeline that make sense based
on how much assistance the de-
veloper, operations engineer, or
whoever will be acting on those
results must perform. Some tests
should be run on every code
check-in, some once a week,
some only before deployment.

You can’t improve what you
don’t measure
Now that you’ve got security
tests running, don’t let pass/fail
be the only metric you gather.
Use those measurements not just
to identify problems as they are
introduced into the codebase,
but as an indicator of where the team needs help. When stat-
ic code analysis routinely finds credentials and other secrets
stored in source code (and checked into the repository), use
this as an opportunity to educate those developers on more
secure ways to use credentials, maybe extending a secrets
broker like Vault into the application as well.
Additional value can be gained from these tests beyond indi-
vidual results by looking for patterns in consecutive results.
Also, when vulnerabilities found in scans are associated to
defects, subsequent scans can be used to validate that the fixes
submitted by developers actually resolved the vulnerability.14

Rushed DevSecOps Is Insecure DevSecOps
DevSecOps offers tremendous opportunity to accelerate the
software development life cycle while enabling consistent,
constantly improvable deployment of infrastructure. Hast-
ily implemented, or prematurely moving half-baked, even
experimental DevOps implementations could expose your
source code, infrastructure and customer data.

About the Author
Tony Rice, CISSP, is a DevSecOps architect at
Cisco. He regularly speaks on effectively in-
corporating application security into DevOps
and leveraging the data that it generates to
not only find vulnerabilities but generate ev-
idence of compliance across a multitude of
standards. He may be reached at trice@cisco.
com.

13 OWASP Zed Attack Proxy Project, https://www.owasp.org/index.php/OWASP_Zed_
Attack_Proxy_Project.

14 Center for Internet Security, “CIS Control 3: Continuous Vulnerability
Management,” https://www.cisecurity.org.

• Administrators who are also users should be interacting
with these systems with separate accounts to prevent
costly mistakes.

Finally, log everything. DevSecOps combines a lot of distinct
automation tools together. Things will go wrong and without
detailed logs, finding out which tool(s) contributed and how
is difficult to impossible.12

Now you may DevSecOps
Now that the DevOps pipeline is no longer leaking source
code, artifacts, and the credentials needed to delete the whole
thing, the pipeline is secure enough to get down to the busi-
ness of improving the security of the products being built
there.
A pattern that has been successfully applied to adding func-
tional and other tests to continuous integration pipelines for
years can be just as successfully applied using security checks
as well: don’t try to boil the ocean. Instead, organize all those
tests that have been running through your head by a) the time
it takes to run them, and b) their tendency to produce false
positives.
Place those quick running, low false-positive ones in the pipe-
line to run on each code check. These are your security smoke
tests, the most basic of sanity tests. They will catch simple
problems that only waste developer, QA, and now security
personnel time when they aren’t stopped early. One way to
determine if a test belongs in this frequently run set of tests:
If you don’t trust it enough to automatically notify developers
or open defects, it doesn’t belong in that set of very frequently
run tests.
Tests that take longer to run like dynamic application secu-
rity scans or those that produce false positives still provide
value but should done periodically, in a separate pipeline,
perhaps weekly. For those long-running, less than-reliable
tests, carve out those that can be run quickly. The key to
maximizing the value DevSecOps provides is continuing to
evolve the tests that are run and when. For example, static
security scanning is fast but notorious for producing lots of
false positives. But some of those tests are quite reliable and
possible only in that context, like those that find hard-cod-
ed secrets in source code. Carve those high-value, low-noise
tests out and move them into the pipeline where they will be
run more frequently.

Vendor tools part of, but not the complete solution
Tool vendors talk a lot about the volume of tests available
across the tools they sell because it demonstrates the value
of investing in their products. But that tool was built to help
a broad spectrum of customers with only the most generic
knowledge of your products, environment, or customers. En-
abling on each option on each test will generate more noise
than value, leading developers to ignore the tests.

12 NIST Special Publication 800-53 (Rev. 4), “Audit Review, Analysis, and reporting
(AU-6), https://nvd.nist.gov/800-53/Rev4/control/AU-6.

Credentials
accidentally leaked
to a public source
code repository
should be revoked
and changed. Better
yet manage them in
a secrets store like
Vault.

November 2019 | ISSA Journal – 19

Secure DevOps before DevSecOps | Tony Rice

mailto:trice%40cisco.com?subject=
mailto:trice%40cisco.com?subject=
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.cisecurity.org/
https://nvd.nist.gov/800-53/Rev4/control/AU-6

